3.31.65 \(\int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx\) [3065]

3.31.65.1 Optimal result
3.31.65.2 Mathematica [A] (verified)
3.31.65.3 Rubi [A] (warning: unable to verify)
3.31.65.4 Maple [A] (verified)
3.31.65.5 Fricas [F(-1)]
3.31.65.6 Sympy [F]
3.31.65.7 Maxima [F]
3.31.65.8 Giac [F(-1)]
3.31.65.9 Mupad [F(-1)]

3.31.65.1 Optimal result

Integrand size = 26, antiderivative size = 93 \[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=-\frac {2 \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{c}+\frac {b \sqrt {d} \text {arctanh}\left (\frac {b d+2 c \sqrt {\frac {d}{x}}}{2 \sqrt {c} \sqrt {d} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{c^{3/2}} \]

output
b*arctanh(1/2*(b*d+2*c*(d/x)^(1/2))/c^(1/2)/d^(1/2)/(a+c/x+b*(d/x)^(1/2))^ 
(1/2))*d^(1/2)/c^(3/2)-2*(a+c/x+b*(d/x)^(1/2))^(1/2)/c
 
3.31.65.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.57 \[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=\frac {\sqrt {\frac {d \left (c+\left (a+b \sqrt {\frac {d}{x}}\right ) x\right )}{x}} \left (-2 \sqrt {c} \sqrt {\frac {d \left (c+a x+b \sqrt {\frac {d}{x}} x\right )}{x}}+b d \text {arctanh}\left (\frac {b d+2 c \sqrt {\frac {d}{x}}}{2 \sqrt {c} \sqrt {\frac {d \left (c+\left (a+b \sqrt {\frac {d}{x}}\right ) x\right )}{x}}}\right )\right )}{c^{3/2} d \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}} \]

input
Integrate[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x^2),x]
 
output
(Sqrt[(d*(c + (a + b*Sqrt[d/x])*x))/x]*(-2*Sqrt[c]*Sqrt[(d*(c + a*x + b*Sq 
rt[d/x]*x))/x] + b*d*ArcTanh[(b*d + 2*c*Sqrt[d/x])/(2*Sqrt[c]*Sqrt[(d*(c + 
 (a + b*Sqrt[d/x])*x))/x])]))/(c^(3/2)*d*Sqrt[a + b*Sqrt[d/x] + c/x])
 
3.31.65.3 Rubi [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.72, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {2066, 1680, 1160, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}} \, dx\)

\(\Big \downarrow \) 2066

\(\displaystyle -\frac {\int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}d\frac {d}{x}}{d}\)

\(\Big \downarrow \) 1680

\(\displaystyle -\frac {2 \int \frac {\sqrt {\frac {d}{x}}}{\sqrt {a+\frac {b d}{x}+\frac {c d}{x^2}}}d\sqrt {\frac {d}{x}}}{d}\)

\(\Big \downarrow \) 1160

\(\displaystyle -\frac {2 \left (\frac {d \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}{c}-\frac {b d \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}d\sqrt {\frac {d}{x}}}{2 c}\right )}{d}\)

\(\Big \downarrow \) 1092

\(\displaystyle -\frac {2 \left (\frac {d \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}{c}-\frac {b d \int \frac {1}{\frac {4 c}{d}-\frac {d^2}{x^2}}d\frac {2 \sqrt {\frac {d}{x}} c+b d}{d \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}}{c}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 \left (\frac {d \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}{c}-\frac {b d^{3/2} \text {arctanh}\left (\frac {d^{3/2}}{2 \sqrt {c} x}\right )}{2 c^{3/2}}\right )}{d}\)

input
Int[1/(Sqrt[a + b*Sqrt[d/x] + c/x]*x^2),x]
 
output
(-2*((d*Sqrt[a + b*Sqrt[d/x] + (c*d)/x^2])/c - (b*d^(3/2)*ArcTanh[d^(3/2)/ 
(2*Sqrt[c]*x)])/(2*c^(3/2))))/d
 

3.31.65.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1680
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k 
 = Denominator[n]}, Simp[k   Subst[Int[x^(k - 1)*(a + b*x^(k*n) + c*x^(2*k* 
n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && Fr 
actionQ[n]
 

rule 2066
Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_), x 
_Symbol] :> Simp[-d^(m + 1)   Subst[Int[(a + b*x^n + (c/d^(2*n))*x^(2*n))^p 
/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2, -2*n 
] && IntegerQ[2*n] && IntegerQ[m]
 
3.31.65.4 Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.29

method result size
default \(-\frac {\sqrt {\frac {b \sqrt {\frac {d}{x}}\, x +a x +c}{x}}\, \left (-\sqrt {\frac {d}{x}}\, x b \ln \left (\frac {2 c +b \sqrt {\frac {d}{x}}\, x +2 \sqrt {c}\, \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}}{\sqrt {x}}\right ) c +2 \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}\, c^{\frac {3}{2}}\right )}{\sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}\, c^{\frac {5}{2}}}\) \(120\)

input
int(1/x^2/(a+c/x+b*(d/x)^(1/2))^(1/2),x,method=_RETURNVERBOSE)
 
output
-((b*(d/x)^(1/2)*x+a*x+c)/x)^(1/2)*(-(d/x)^(1/2)*x*b*ln((2*c+b*(d/x)^(1/2) 
*x+2*c^(1/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2))/x^(1/2))*c+2*(b*(d/x)^(1/2)*x+ 
a*x+c)^(1/2)*c^(3/2))/(b*(d/x)^(1/2)*x+a*x+c)^(1/2)/c^(5/2)
 
3.31.65.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=\text {Timed out} \]

input
integrate(1/x^2/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.31.65.6 Sympy [F]

\[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=\int \frac {1}{x^{2} \sqrt {a + b \sqrt {\frac {d}{x}} + \frac {c}{x}}}\, dx \]

input
integrate(1/x**2/(a+c/x+b*(d/x)**(1/2))**(1/2),x)
 
output
Integral(1/(x**2*sqrt(a + b*sqrt(d/x) + c/x)), x)
 
3.31.65.7 Maxima [F]

\[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=\int { \frac {1}{\sqrt {b \sqrt {\frac {d}{x}} + a + \frac {c}{x}} x^{2}} \,d x } \]

input
integrate(1/x^2/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(b*sqrt(d/x) + a + c/x)*x^2), x)
 
3.31.65.8 Giac [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=\text {Timed out} \]

input
integrate(1/x^2/(a+c/x+b*(d/x)^(1/2))^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.31.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} x^2} \, dx=\int \frac {1}{x^2\,\sqrt {a+\frac {c}{x}+b\,\sqrt {\frac {d}{x}}}} \,d x \]

input
int(1/(x^2*(a + c/x + b*(d/x)^(1/2))^(1/2)),x)
 
output
int(1/(x^2*(a + c/x + b*(d/x)^(1/2))^(1/2)), x)